• ECONOMETRICS I
  • 1 Preface
    • 1.1 Welcome
    • 1.2 Context
  • I Overview
  • 2 What is Econometrics
  • 3 This Course
    • Ingredients
    • Recommendations
    • 3.1 Contents
      • 3.1.1 Calendar
    • 3.2 Syllabus
      • 3.2.1 Grading
      • 3.2.2 Course Format
    • 3.3 Bibliography
      • 3.3.1 Basic bibliography
      • 3.3.2 Recommended bibliography
    • 3.4 Tools
  • 4 Design of Experiments
  • 5 Causal Models
    • 5.1 An Example
    • 5.2 Regression Analysis
  • 6 Basic Concepts: An Example
    • 6.1 Dataset
      • 6.1.1 What Are Variables?
    • 6.2 Descriptive Statistics
      • 6.2.1 Data Summary and Presentation
    • 6.3 Data Display
    • 6.4 The Output
      • 6.4.1 Distribution I
      • 6.4.2 Distribution II
    • 6.5 New variables
      • 6.5.1 Relation with PRICE
    • 6.6 Comparing Group Means
      • 6.6.1 Decision Making for Single Sample
      • 6.6.2 Decision Making for Two Samples
  • 7 Team Exercises
    • 7.1 Homework: It’s your turn!
    • 7.2 Data sets
      • 7.2.1 Teacher Ratings
      • 7.2.2 Smiles and Leniency
      • 7.2.3 Credit Card Expenditure
      • 7.2.4 Economics Journal Subscription
  • 8 Just Another Example
    • 8.1 Data
    • 8.2 Describing Data
    • 8.3 Price by OS
      • 8.3.1 Data
      • 8.3.2 Research question
      • 8.3.3 Preparing Data
      • 8.3.4 Mean Comparison
      • 8.3.5 More on data visualization
    • 8.4 Price by Brand
    • 8.5 Price by Screen Size
    • 8.6 Price by Storage Capacity
    • 8.7 Price by Dual Sim
  • II Design of Experiments
  • 9 What is experimental design?
  • 10 What are the uses of DOE?
    • 10.1 Components of DoE
  • 11 What are the steps in DOE?
    • 11.1 Nine Basic Rules
    • 11.2 Uses of DoE
      • Useful Links
  • 12 Hypothesis Testing
    • 12.1 How to?
    • 12.2 Terminology
    • 12.3 A snapshot
  • 13 Inference on the Mean
    • 13.1 One-Sample: Hypothesis Testing on the Mean
      • 13.1.1 Example
    • 13.2 Two-Samples: Hypothesis Testing on the Difference in Means
      • 13.2.1 Independent samples and Equal variances
      • 13.2.2 Example
    • 13.3 Working with Excel
      • 13.3.1 Desktop version
      • 13.3.2 Cloud version
    • 13.4 p-values: t Distribution
  • 14 Inference on Proportions
    • 14.1 One-Sample: Hypothesis Testing on a Proportion
      • 14.1.1 The Hypotheses and \(p\)-value
      • 14.1.2 Decision rule
      • 14.1.3 Example 01
      • 14.1.4 Example 02
      • 14.1.5 Example 03
      • 14.2.4 Example 02
    • 14.3 Standard Normal Distribution
  • III Causal Models
  • 15 What are causal models?
  • 16 Simple Linear Regression
    • 16.1 Straigh Line Relationship
    • 16.2 Topics to cover
      • 16.2.1 Our Monet Case
    • 16.3 Regression Basics
    • 16.4 Calculating the Regression Line
      • 16.4.1 Technical Note: the “Best Fitting Line”
    • 16.5 Hypothesis Testing on Parameters
    • 16.6 Confidence Intervals
      • 16.6.1 Confidence Interval on Regression Coefficients
      • 16.6.2 Confidence Interval on Fitted Values
    • 16.7 Coefficient of Determination
      • 16.7.1 Technical notes
    • 16.8 Dummy Variables
      • 16.8.1 A Dummy variable
      • 16.8.2 In the Model
      • 16.8.3 An Example
    • 16.9 Log-Log Models
    • 16.10 Quadratic Models
      • 16.10.1 Example
    • 16.11 Parameter Interpretation
    • 16.12 Spurious Regression
  • 17 Multiple Linear Regression
    • 17.1 Model Parameters
    • 17.2 Fitted Values and Residuals
    • 17.3 ANOVA
    • 17.4 R-squared, and Adjusted R-squared
    • 17.5 Significance Testing of Each Variable
    • 17.6 Assumptions of Multiple Linear Regression
    • 17.7 Multicollinearity
      • 17.7.1 The problem
      • 17.7.2 Exact collinearity
      • 17.7.3 Indicators of Multicollinearity
      • 17.7.4 Detecting Multicollinearity
      • 17.7.5 Corrections for Multicollinearity
      • 17.7.6 Our Monet Case
      • 17.7.7 Revisiting Monet Case
    • 17.8 Heteroscedasticity
  • IV Final Project
  • 18 Intro
  • 19 Case A: Body fat in women
  • 20 Case B: Lung Function in 6 to 10 Year Old Children
  • 21 Peru
    • 21.1 Activity
  • Appendix
  • A Descriptive Statistics
  • B In Excel
  • C Students’t Distribution
    • C.1 Degrees of Freedom (df)
    • C.2 Area under the curve
    • C.3 The t-table
    • C.4 Acceptance/Rejection Region
  • D Team Exercises
    • D.1 Data sets
      • D.1.1 Hospital Infection Risk
      • D.1.2 Skin Cancer Mortality
      • D.1.3 Hand and Height
      • D.1.4 Old Faithful geyser
      • D.1.5 Real State
      • D.1.6 Teen Birth Rate and Poverty Level Data
      • D.1.7 Lung Function in 6 to 10 Year Old Children
  • E Time to Play
    • E.1 Manual
  • F About me
  • Universidad Nebrija.
    Published with bookdown

Econometrics I | Class Notes

8.7 Price by Dual Sim


Sources

  • Predicting Mobile Phone Prices
  • Product Chart
  • Comparing Means of Two Groups in R